Tautomeriefähige 1-Alkyl-2-aryldiazene. Synthese und spektroskopische Untersuchungen

Edgar Hofer

Institut für Organische Chemie der Universität Hannover, Schneiderberg 1 B, D-3000 Hannover

Eingegangen am 7. Dezember 1978

Eine bequeme Synthese für 1-(4-Hydroxyphenyl)-2-methyldiazene 7a - h und 1-(4-Hydroxy-1-naphthyl)-1-methyldiazen 12 wird beschrieben. Die Existenz lösungsmittel- und temperaturabhängiger Tautomerengleichgewichte des Typs $1 \rightleftharpoons 2$ wird nachgewiesen. Spektroskopische Anzeichen für Tautomere des Typs 3 ergaben sich nicht. Die Lage des Tautomerengleichgewichts $12 \rightleftharpoons 13$ wird für verschiedene Temperaturen und Lösungsmittel bestimmt.

Tautomeric 1-Alkyl-2-aryldiazenes. Synthesis and Spectroscopic Investigations

A convenient synthesis of 1-(4-hydroxyphenyl)-2-methyldiazenes 7a - h and 1-(4-hydroxynaphthyl)-2-methyldiazene 12 is reported. Evidence for a solvent and temperature dependent tautomeric equilibrium of type $1 \rightleftharpoons 2$ has been found. In contrast no spectroscopic indications for type 3 tautomers have been observed. Values of the tautomeric equilibrium $12 \rightleftharpoons 13$ are given for various solvents and different temperatures.

Auffälligstes Merkmal bei Photoisomerisierungen gelöster tautomeriefähiger Diaryldiazene ist die rasch ablaufende thermische *cis-trans*-Isomerisierung¹). Das hat schon bald zu der Annahme geführt, daß tautomere Formen sowohl in photostationären Zuständen als auch bei sich daran anschließenden thermischen Gleichgewichtseinstellungen eine Rolle spielen können²). Die bislang nicht vollständig gelungene Aufklärung der Photochemie dieser Verbindungsklasse in Lösung erfordert eine exakte Analyse der zu erwartenden Tautomeren- und Stereoisomerengleichgewichte, die nicht immer durchgeführt werden konnte.

Günstige Voraussetzungen zur Klärung photochemisch induzierter Reaktionen tautomeriefähiger Diazene lassen *trans*-1-(4-Hydroxyphenyl)-2-alkyldiazene 1t erwarten. Auch hier kann neben einer Photoisomerisierung zum *cis*-Diazen 1c mit dem Auftreten der tautomeren Chinon-alkylhydrazone 2E und 2Z gerechnet werden. Zusätzlich ist in diesem Fall auch noch eine Isomerisierung zu den Aldehyd-hydrazonen 3E und 3Z möglich³⁾. Wegen der einfachen Konstitution dieser Substanzklasse sollte eine Beteiligung der Isomeren 1–3 sowohl im thermischen Gleichgewicht als auch in photostationären Zuständen mit spektroskopischen Methoden gut nachweisbar sein.

Es wird hier zunächst eine einfache Synthese einiger (Hydroxyphenyl)diazene 1t beschrieben. Im Anschluß daran werden die Ergebnisse der umfangreichen Untersuchungen zur Tautomerie und Stereoisomerie dieser Verbindungsklasse mitgeteilt. Photochemisch induzierte Umlagerungen sind Gegenstand der folgenden Mitteilung.

Synthese

Ausgehend von den gut zugänglichen 1,4-Benzochinonen 5a-h gelangt man durch Reaktion mit Methyltosylhydrazin 4 zu den Chinon-tosylhydrazonen 6a-h. In allen Fällen reagiert ausschließlich die sterisch weniger gehinderte Carbonylgruppe der 1,4-Benzochinone, ein Reaktionsverhalten, das auch bei Umsetzungen von Chinonen mit Toluolsulfonohydrazid, Phenylhydrazinen und *N*-Methyl-*N*-phenylhydrazinen beobachtet worden ist⁴⁾.

Wird die Lösung der Chinon-tosylhydrazone 6a - h in konz. Schwefelsäure bei 273 K kurze Zeit gerührt und anschließend auf Eis gegossen, so lassen sich in guten Ausbeuten gelbe kristalline Verbindungen isolieren, deren analytische Zusammensetzung und Masse des Molekül-Ions den Werten der erwarteten Verbindungsklasse 7-9 entsprechen. Auf analogem Weg gelingt es, aus dem Naphthochinon 10 über das Chinon-tosylhydrazon 11 das (Hydroxynaphthyl)diazen 12 bzw. Chinon-alkylhydrazon 13 oder Aldehydhydrazon 14 darzustellen.

In letzter Zeit ist es gelungen, auch 1,2-Benzochinone mit Methyltosylhydrazin 4 umzusetzen und so zu den 1-(2-Hydroxyphenyl)-2-methyldiazenen 15 zu gelangen, die bereits früher auf anderem Wege dargestellt wurden ⁵). Ebenso gelingt es, anstelle von 4 weitere Alkyltosylhydrazine zur Synthese von Hydroxydiazenen einzusetzen. Die so erhältlichen Verbindungen werden zur Zeit genauer untersucht. Japp-Klingemann-Reaktionen diazotierter *p*-Aminophenole erlauben die Darstellung von Verbindungen des allgemeinen Typs **3**. Als z. T. isolierbare Zwischenstufen werden dabei (Hydroxyphenyl)diazene des Typs **1** beobachtet ⁶). Die für das Gelingen der Reaktion notwendigen aktivierenden Substituenten der Alkylkomponente sind für die hier angestrebten Untersuchungen zunächst unerwünscht.

In dem geschilderten Syntheseweg kann man die Alkyltosylhydrazine als synthetisches Äquivalent für Alkylhydrazine auffassen, mit deren Hilfe es gelingt, die sonst ablaufenden Redoxreaktionen bei der Umsetzung von 1,4-Benzochinonen mit Alkylhydrazinen zu umgehen⁷⁾. Es wurde somit ein präparativer Zugang zu der angestrebten Verbindungsklasse geschaffen, der es erlaubt, eine Fülle unterschiedlich substituierter Verbindungen darzustellen und auch geeignet ist, gezielt Modellverbindungen zu synthetisieren, die exakte Aussagen zur Tautomerie und Stereoisomerie dieser Verbindungsklasse erwarten lassen.

Spektroskopische Untersuchungen

Die IR-Spektren von 12 lassen in Tetrachlorkohlenstoff als Lösungsmittel eine sehr starke Bande bei 3615 und eine schwache Bande bei 3355 cm⁻¹ erkennen. In [D]Chloroform hingegen werden zwei mittelstarke Banden etwa gleicher Intensität bei 3605 und 3355 cm⁻¹ beobachtet. Durch Messungen bei unterschiedlichen Konzentrationen und Schichtdicken wurde sichergestellt, daß das Auftreten zweier Banden in diesem Bereich nicht auf ein Gleichgewicht zwischen freier und brückengebundener OH-Valenzschwingung zurückzuführen ist. Somit kann mit großer Berechtigung die Bande bei 3605 bzw. 3615 cm⁻¹ einer OH- und die bei 3355 cm⁻¹ einer NH-Valenzschwingung zugeordnet werden, was für die Existenz eines lösungsmittelabhängigen Tautomerengleichgewichts $12 \rightleftharpoons 13$ spricht. Denkbar ist jedoch auch, daß das Vorliegen dieses Tautomerengleichgewichtes durch eine Beteiligung von Aldehyd-hydrazon 14, für das NH- und OH-Valenzbanden im IR-Spektrum nebeneinander auftreten müssen, lediglich vorgetäuscht wird. Eine Entscheidung darüber konnte durch Auswertung der ¹H-NMR-Spektren getroffen werden. Die Existenz des Chinon-alkylhydrazons 13 in [D]Chloroform wird durch das Auftreten eines Dubletts bei $\delta = 2.18^{80}$ für die Methylgruppe in 3-Stellung und eines Quadrupletts bei $\delta = 7.34$ für das Proton in 2-Stellung jeweils mit der Kopplungskonstanten J = 1.4 Hz bewiesen. Chemische Verschiebung und allylische Kopplungskonstante dieser Größenordnung sind typisch für methylsubstituierte chinonartige Systeme⁹⁾. Das Resonanzabsorptionssignal der N-Methylgruppe von 13 wird durch Kopplung mit dem NH-Proton in ein Dublett bei $\delta = 3.41$ aufgespalten. Das NH-Proton selbst zeigt bei Raumtemperatur ein verbreitertes Signal bei $\delta = 6.99$, das erst bei tiefen Temperaturen ein schwach angedeutetes Quadruplett erkennen läßt. Die Größe der Kopplungskonstante beträgt J = 4.0 Hz und ist typisch für NH-CH-Kopplungen¹⁰. Die Singuletts bei $\delta = 5.84$, 4.11 und 2.44 können dem OH-Proton, der N-Methylgruppe und der Ringmethylgruppe der Hydroxydiazenform 12 zugeordnet werden. Die chemische Verschiebung der N-Methylgruppe stimmt gut mit Literaturwerten für Methyldiazene¹¹) überein, und besonders das Integrationsverhältnis von 1:3:3 läßt sich nur mit diesem Tautomeren, keinesfalls, jedoch mit dem Vorliegen von Aldehyd-hydrazon 14 erklären. Die Multipletts mit den Schwerpunkten $\delta = 8.7, 8.2$ und 7.3 werden durch Überlagerung der Signale der Ringprotonen von 12 und 13 verursacht. Die Auswertung der Integrationskurven, die besonders im Bereich der Methylsignale einfach möglich ist, ergibt für das Chinon-alkylhydrazon 13 72% und für das Hydroxydiazen 12 28% bei einer Meßtemperatur von 300 K.

In $[D_4]$ Methanol ist bei einer Sondentemperatur von 300 K im Bereich der Ringmethylgruppen ein leicht verbreitertes Singulett bei $\delta = 2.30$ und im Bereich der N-Methylgruppen ein ebenfalls verbreitertes Singulett bei $\delta = 3.80$ zu erkennen. Bei Sondentemperaturen von 330 K werden beide Signale deutlich schärfer. Beim Übergang zu niedrigeren Meßtemperaturen verbreitern sich beide Signale, durchlaufen zwei unterschiedliche Koaleszenspunkte, um dann bei 190 K die getrennten Signale für die Tautomeren 12 und 13 zu zeigen, wobei das Chinon-alkylhydrazon 13 zu 39% vorliegt. Wird bei 190 K der Methanollösung 1 Tropfen 10proz. Trifluoressigsäure zugesetzt, sind erneut für die Ring- und N-Methylgruppe jeweils nur ein Signal bei $\delta = 2.25$ und 3.70 zu erkennen. Denselben Effekt hat der Zusatz von wenig methanolischer KOH, jedoch werden in diesem Fall Signallagen bei $\delta = 2.35$ und 3.85 gemessen.

In allen anderen untersuchten Lösungsmitteln waren in dem jeweils zugängigen Temperaturbereich immer Kernresonanzsignale für beide Tautomere zu erkennen. Die Auswertung der Integrationskurven ermöglicht die einfache Bestimmung der Lösungsmittelund Temperaturabhängigkeit des Tautomerengleichgewichtes $12 \rightleftharpoons 13$. Der Anteil an 13 reicht dabei von 18% in [D₈]Dioxan bei 300 K bis zu 91% in [D]Chloroform bei 220 K. Auffallend ist, daß in [D₆]Aceton keine oder nur eine sehr geringe Temperaturabhängigkeit des Tautomerengleichgewichts gefunden wird.

Wird bei 300 K den neutralen Lösungsmitteln wenig H^+ oder OH^- zugesetzt, werden auch jetzt Linienverbreiterungen bzw. gemittelte Signale im Bereich der Methylgruppen registriert. Durch Temperaturerniedrigung können auch hier wieder scharfe, getrennte Signale für beide Tautomere erhalten werden. In keinem Fall werden jedoch Anzeichen für eine Bildung des Aldehyd-hydrazons 14 gefunden.

Solvens	% Chinon-alkylhydrazon 13 Meßtemperatur							
	300 K	270 K	240 K	220 K	200 K	190 K		
[D]Chloroform	72	80	88	91				
[D ₈]Toluol	57	63	71					
$[D_4]$ Methanol						39		
[D ₆]Aceton	32	32	33	33	34			
[D ₆]Benzol	57							
[D ₈]Dioxan	18							

Tab. 1. Lösungsmittel- und Temperaturabhängigkeit des Tautomerengleichgewichts $12 \rightleftharpoons 13$

Bei tautomeriefähigen Diaryldiazenen ist das Auftreten von zwei Absorptionsbanden im UV-Vis-Spektrum bei 400 nm oft als Beweis für das Vorliegen eines Tautomerengleichgewichts herangezogen worden¹². Später wurde gezeigt, daß das bei dieser Verbindungsklasse nicht allgemein anwendbar ist¹³.

Die UV-Vis-Spektren von 12 zeigen in allen Lösungsmitteln oberhalb von 360 nm unabhängig von der Lage des Tautomerengleichgewichts $12 \rightleftharpoons 13$ nur eine Absorptionsbande, deren Lage und Intensität lösungsmittelabhängig ist. Dabei wurden in Lösungsmitteln, in denen laut NMR-Messungen hohe Anteile an 13 vorliegen, auch große Extinktionskoeffizienten gefunden.

Solvens	Chinon-alkyl- hydrazon 13 (%) ^{a)}	λ _{max} (nm)	lg ε _{max} ^{b)}	
Dioxan	18	416	3.66	
Tetrachlorkohlenstoff ^{c)}		407	3.89	
Aceton	32	420	3.93	
Benzol	57	413	4.07	
Chloroform	72	420	4.17	

Tab. 2. Lösungsmittelabhängigkeit von Lage und Intensität der längstwelligen UV-Vis-Absorptionsbande beim Tautomerengleichgewicht $12 \rightleftharpoons 13$

^{a)} Ermittelt aus ¹H-NMR-Daten in deuterierten Solventien bei 300 K. – ^{b)} Gemessen bei 293 K. – ^{c)} Wegen geringer Löslichkeit keine ¹H-NMR-Messungen.

Eine spektroskopische Identifizierung möglicher Tautomerengleichgewichte in Lösung bei 1-(4-Hydroxyphenyl)-2-methyldiazenen 7a-h ist nach den bei 12 gesammelten Erfahrungen eindeutig möglich. Die IR-Spektren der Hydroxydiazene 7a-h, aufgenommen in [D]Chloroform und Tetrachlorkohlenstoff als Lösungsmittel, zeigen in allen Fällen die intensive OH-Valenzbande oberhalb 3500 cm⁻¹, die NH-Valenzbande bei 3350 cm⁻¹ fehlt dagegen völlig. Eine Beteiligung von 8a-h und 9a-h kann in diesen Lösungsmitteln also ausgeschlossen werden. Dagegen sind im ¹H-NMR-Spektrum von 7c in [D₆]Aceton weitere intensitätsschwache Resonanzabsorptionssignale zu erkennen, die dem Chinon-alkylhydrazon 8c zugeordnet werden können.

Abb. 1. ¹H-NMR-Spektrum von 7c ([D₆]Aceton, 100 MHz, δ-Skala)

Bedingt durch die starre C = N-Doppelbindung und den N - N-Bindungswinkel bei 8c sind die Protonen in 2- und 6-Stellung magnetisch nicht äquivalent und ergeben durch Kopplung miteinander die Dubletts bei $\delta = 7.35$ und 6.95 mit J = 2.7 Hz. Aus dem gleichen Grund werden für die tert-Butylgruppen in 3- und 5-Stellung zwei Singuletts bei $\delta = 1.26$ und 1.24 gefunden. Das Signal der N-Methylgruppe ist durch Kopplung mit dem NH-Proton in ein Dublett bei $\delta = 3.23$ mit J = 4.0 Hz aufgespalten. Ein Signal für das NH-Proton ist nicht zu erkennen, vermutlich liegt es wegen des geringen Anteils an 8c, der Aufspaltung zu einem Quadruplett und der zusätzlichen Verbreiterung unterhalb der Nachweisgrenze der NMR-Spektroskopie. Die Singuletts bei $\delta = 7.56, 6.29, 3.83$ und 1.42, deren Integrationsverhältnis 2:1:3:18 beträgt, lassen sich den Ringprotonen in 2und 6-Stellung, dem OH-Proton, der N-Methylgruppe und den tert-Butylgruppen in 3und 5-Stellung des Hydroxydiazens 7c zuordnen. Die Auswertung der Integrationskurven ergibt 6% Chinon-alkylhydrazon 8c neben 94% Hydroxydiazen 7c. In den Lösungsmitteln $[D_6]$ Dimethylsulfoxid, $[D_5]$ Nitrobenzol, $[D_4]$ Methanol und $[D_3]$ Acetonitril werden ebenfalls Hinweise auf die Existenz von 8c gefunden, jedoch ist der Anteil hier so gering, daß er an der Nachweisgrenze der ¹H-NMR-Spektroskopie liegt und so keine exakte Gleichgewichtsbestimmung möglich ist. Messungen im Temperaturbereich von 450 K ($[D_5]$ Nitrobenzol) bis 200 K ($[D_6]$ Aceton) lassen keine Änderung des Tautomerengleichgewichts $7c \rightleftharpoons 8c$ erkennen. Bei allen anderen dargestellten Verbindungen werden in den ¹H-NMR-Spektren ausschließlich die Signale der Hydroxydiazene 7a, b, d-h gefunden, insbesondere sind Anzeichen für die Existenz der Aldehyd-hydrazone 9a-h nicht zu erkennen. Auch eine schnelle Umlagerung wie bei 12 kann mit großer Sicherheit ausgeschlossen werden, da einmal für Lösungsmittel wie [D]Chloroform und Tetrachlorkohlenstoff die IR-Spektren dagegensprechen, zum anderen bei temperaturabhängigen ¹H-NMR-Messungen in keinem Lösungsmittel eine Linienformänderung gefunden wurde.

Aufschlußreich ist ein Vergleich der UV-Vis-Spektren von 7c und d. In allen Fällen wird oberhalb 360 nm jeweils nur eine Absorptionsbande gefunden. Bei 7d sind Lage und Intensität des Absorptionsmaximums bei 395 nm in Cyclohexan und Aceton weitgehend identisch und stimmen gut mit Werten überein, die für den $n-\pi^*$ -Übergang der Diazengruppe bei 1-Ethyl-2-phenyldiazen gefunden wurden¹⁴⁾. Während für 7c die

Nr.	Solvens	$\lambda_{max}(nm)$	lg ε _{max}	
	Cyclohexan	394	2.40	
	Aceton	395	3.18	
7 d	Cyclohexan	396	2.30	
	Aceton	394	2.37	

Tab. 3. Lage und Intensität der längstwelligen UV-Vis-Absorptionsbande von 7c und d

Lage des längstwelligen Absorptionsmaximums in diesen Lösungsmitteln wieder gleich bleibt, steigt die Intensität des Bandenmaximums beim Übergang von Cyclohexan zu Aceton als Lösungsmittel stark an, was nach den Ergebnissen der ¹H-NMR-Spektroskopie auf eine Beteiligung des Chinon-alkylhydrazons 8c in diesen Lösungsmitteln zurückgeführt werden kann. Das heißt aber, daß auch in diesem Fall die Lagen der längstwelligen Absorptionsbanden des Hydroxydiazens 7c und des Chinon-alkylhydrazons 8c übereinstimmen. Wird der ¹H-NMR-spektroskopisch ermittelte Prozentgehalt an 8c in [D₆]Aceton zugrunde gelegt, so kann für den molaren Extinktionskoeffizienten ε_{max} des reinen Chinon-alkylhydrazons 8c ein Wert von lg $\varepsilon = 4.2$ abgeschätzt werden. Im Tautomerengleichgewicht des allgemeinen Typs $1 \rightleftharpoons 2$ ist also eine Beteiligung von 2 durch seinen um etwa zwei Zehnerpotenzen größeren Extinktionskoeffizienten leicht im UV-Vis-Spektrum zu erkennen.

Bei der Diskussion der Spektren wurde bislang weder auf die mögliche *cis-trans*-Isomerie bei den Hydroxydiazenen, noch auf die *E*,*Z*-Isomerie bei den Chinon-alkylhydrazonen eingegangen. Die gewählte Synthesemethode führt mit Sicherheit ausschließlich zu *trans*-Hydroxydiazenen, und auch mit einer thermischen *cis-trans*-Isomerisierung braucht in Lösung nicht gerechnet zu werden. Bei Ausschluß photochemischer Reaktionen kann also eine Beteiligung von *cis*-Hydroxydiazenen nicht erwartet werden. So lassen sich auch alle angeführten spektroskopischen Daten zwanglos mit dem Vorliegen der *trans*-Isomeren deuten.

Wegen der symmetrischen Disubstitution in 3- und 5-Stellung ist bei Chinon-alkylhydrazon 8c E,Z-Isomerie nicht beobachtbar. Jedoch führen die C=N-Doppelbindung und der N-N-Bindungswinkel zu stark unterschiedlichen chemischen Verschiebungen für die Protonen in 2- und 6-Stellung und darüber hinaus zu noch gut meßbaren Unterschieden der chemischen Verschiebungen für die *tert*-Butylgruppen in 3- und 5-Stellung. Im ¹H-NMR-Spektrum von 13 sollte daher E-und Z-Isomeres durch unterschiedliche chemische Verschiebungen für das Ringproton in 2-Stellung und die Methylgruppen in 3-Stellung nachweisbar sein^{4b, 15}. In keinem der untersuchten Lösungsmittel konnten dafür Hinweise gefunden werden. Es ist also wahrscheinlich, daß in Lösung nur eines der beiden möglichen Isomeren vorliegt. Eine Zuordnung wurde bislang nicht versucht.

Diskussion

Die Lage der Tautomerengleichgewichte unterscheidet sich bei den vorgestellten Hydroxydiazenen erheblich. Während 12 in Abhängigkeit von Lösungsmittel und Temperatur bis zu 90% in der Chinon-alkylhydrazonform 13 vorliegt, existieren 7a, b, d-h

2920

in allen Lösungsmitteln zu 100% als Hydroxydiazene. Die geringen Anteile (unter 10%) an Chinon-alkylhydrazon 8c beweisen jedoch, daß auch bei dieser Substanzklasse ein Tautomerengleichgewicht möglich ist. Eine Beteiligung der Aldehyd-hydrazone 9a-hund 14 in Lösung in Anteilen, die mit spektroskopischen Methoden (UV-Vis, IR, NMR) nachweisbar sind, kann dagegen ausgeschlossen werden. Die Begünstigung von 13 im Tautomerengleichgewicht $12 \rightleftharpoons 13$ im Vergleich zur Lage des Tautomerengleichgewichts $7 \rightleftharpoons 8$ läßt sich mit der Stabilisierung des chinoiden Systems durch den anellierten Ring zwanglos erklären. Zur Deutung der Lösungsmittelabhängigkeit des Tautomerengleichgewichts bietet sich eine Klassifizierung der Lösungsmittel nach ihrer Dielektrizitätskonstanten¹⁶⁾ und Wasserstoffbrückenbasizität bzw. -acidität¹⁷⁾ an. In Lösungsmitteln hoher Wasserstoffbrückenbasizität wie $[D_8]$ Dioxan und $[D_6]$ Aceton werden hohe Anteile an 12 gefunden. Offensichtlich wird in solchen Lösungsmitteln durch Wasserstoffbrückenbindung mit der OH-Gruppe der Hydroxydiazenform diese begünstigt. Wird die OH-Gruppe sterisch gut abgeschirmt - wie bei 7c - spielt die Wasserstoffbrückenbasizität keine entscheidende Rolle mehr, hier wird dann in Lösungsmitteln hoher Dielektrizitätskonstante wie in $[D_6]$ Aceton und $[D_6]$ Dimethylsulfoxid das Chinon-hydrazon 8c nachweisbar. Der Ersatz einer tert-Butylgruppe durch eine Methylgruppe vermindert die sterische Abschirmung der OH-Gruppe so weit, daß jetzt auch in [D₆]Aceton ausschließlich Hydroxydiazen 7d vorliegt, wie die NMR- und UV-Vis-Spektren beweisen. Nach diesen Überlegungen ist für 12 in Lösungsmitteln hoher Wasserstoffbrückenbasizität und geringer Dielektrizitätskonstante der niedrigste Anteil an Chinon-alkylhydrazon 13 zu erwarten, was durch die Tautomerengleichgewichtsbestimmung in $[D_8]$ Dioxan bestätigt wird.

Bei einer Beurteilung der Temperaturabhängigkeit des Gleichgewichts 12 = 13 muß die starke Lösungsmittelabhängigkeit dieses Systems berücksichtigt werden. Selbst bei [D]Chloroform und [D₈]Toluol, die noch am ehesten als inerte Lösungsmittel angesehen werden können, ist durchaus wahrscheinlich, daß die höhere Dielektrizitätskonstante dieser Solventien bei tiefen Temperaturen das Ansteigen des Chinon-hydrazon-Anteils 13 bei Temperaturerniedrigung mit verursacht. Mit Sicherheit wird die Temperaturabhängigkeit des Tautomerengleichgewichts in [D₆]Aceton durch Änderung der Lösungsmitteleigenschaften bei Temperaturänderung beeinflußt. Hier heben sich die Änderung der Dielektrizitätskonstanten und die Änderung der Stärke der Wasserstoffbrückenbindung so weit auf, daß praktisch eine Temperaturunabhängigkeit des Tautomerengleichgewichts resultiert. In Solventien, die sowohl hohe Wasserstoffbrückenbasizität als auch hohe Wasserstoffbrückenacidität aufweisen, wie $[D_4]$ Methanol (amphiprotic solvents¹⁷), wird bei Raumtemperatur eine im Sinne der ¹H-NMR-Zeitskala schnelle reversible Tautomerisierung $12 \rightleftharpoons 13$ beobachtet. Durch den Nachweis, daß durch Säure- bzw. Basenzusatz zu $[D_4]$ Methanol die Tautomerisierungsgeschwindigkeit erhöht werden kann, wird nahegelegt, daß diese schnelle Tautomerengleichgewichtseinstellung unter Beteiligung ionischer Formen erfolgt.

	Tab. 4. Ausbeuten, Schmelzpunkte	e, Elemen	taranalysen und ch	emische Verschiebung der C	Chinon-tosylhydrazone 6a – h	und 11
	-1,4-benzochinon-1- methyl(p-tolylsulfonyl)- hydrazon	Ausb. (%)	Schmp. (°C/Methanol)	Summenformel (Molmasse)	Analyse C H N	δ -Werte N-Methyl (TMS $\delta = 0$; [D]Chloroform)
6a	3,5-Dimethyl-	68	106	C ₁₆ H ₁₈ N ₂ O ₃ S (318.4)	Ber. 60.36 5.70 8.80 Gef. 60.09 5.68 8.59	2.93
6 b	2,3,5-Trimethyl-	76	143	$C_{17}H_{20}N_2O_3S$ (332.2)	Ber. 61.43 6.06 8.43 Gef. 61.18 6.05 8.26	2.88
66	3,5-Di- <i>tert</i> -butyl-	59	117	C ₂₂ H ₃₀ N ₂ O ₃ S (402.6)	Ber. 65.64 7.51 6.96 Gef. 65.33 7.46 6.71	2.93
6d	3- <i>tert</i> -Butyl- 5-methyl-	63	109	C ₁₉ H ₂₄ N ₂ O ₃ S (360.5)	Ber. 63.31 6.71 7.77 Gef. 63.19 6.76 7.60	2.92
6e	3,5-Diisopropyl-	70	111	C ₂₀ H ₂₆ N ₂ O ₃ S (374.5)	Ber. 64.15 7.00 7.48 Gef. 63.82 6.97 7.31	2.95
6f	3-Brom-5-tert-butyl-	69	113	C ₁₈ H ₂₁ BrN ₂ O ₃ S (425.4)	Ber. 50.83 4.98 6.59 Gef. 50.71 4.93 6.41	3.02 und 3.34
6g	3-Brom-5- <i>tert</i> -butyl- 2-methyl-	73	122	C ₁₉ H ₂₃ BrN ₂ O ₃ S (439.4)	Ber. 51.94 5.28 6.38 Gef. 51.78 5.24 6.19	2.98
6ћ	2,3,5-Trichlor-	71	115	C ₁₄ H ₁₁ Cl ₃ N ₂ O ₃ S (393.7)	Ber. 42.71 2.82 7.12 Gef. 42.82 2.80 7.01	3.40
11	3-Methyl-1,4-naphthochinon- 1-methyl(p-tolyl- sulfonyl)hydrazon	74	141	C ₁₉ H ₁₈ N ₂ O ₃ S (354.4)	Ber. 64.39 5.12 7.90 Gef. 64.31 5.09 7.67	2.95

Chemische Berichte Jahrg. 112

Experimenteller Teil

¹H-NMR-Spektren: Varian EM 360 und HA 100, Bruker HX 90 und WH 90, Tetramethylsilan als innerer Standard. – Massenspektren: MAT CH-5. – IR-Spektren: Perkin Elmer 457 und 580. – UV-Vis-Spektren: Zeiss PM Q II. – Elementaranalysen: Mikroanalytisches Labor des Organisch-Chemischen Instituts der Universität Hannover. – Schmelzpunkte: Kupferblock, unkorrigiert. – Chromatographie: Kieselgel, Korngröße 0.3–0.5 mm, Laufmittel: Methylenchlorid mit bis zu 5% Methanol.

Allgemeine Arbeitsweise zur Darstellung der Chinon-tosylhydrazone 6a - h und 11: Die Lösung von 10 mmol (2.00 g) Methyltosylhydrazin 4 in 20 ml Methanol wird mit 1 mmol (0.11 g) Trifluoressigsäure versetzt und zu 11 mmol des jeweiligen Chinons, das in einer zur Lösung gerade ausreichenden Menge Methanol gelöst ist, gegeben. Die Reaktionsmischung wird 1 h bei 273 K gerührt. Die ausgefallenen gelben bis orangeroten Kristalle werden abfiltriert und mehrmals mit kaltem Methanol gewaschen. Die in Tab. 4 angegebenen Ausbeuten beziehen sich auf die Rohprodukte. Die dort ebenfalls angegebenen Werte für Schmelzpunkte, Analysen und chemische Verschiebung der N-Methyl-Gruppe gelten für aus Methanol umkristallisierte Substanzen.

Allgemeine Arbeitsweise zur Darstellung der Hydroxydiazene 7a-h und 12: 3 mmol Chinontosylhydrazon 6a-h und 11 werden portionsweise zu 20 ml konz. Schwefelsäure, die im Eisbad gekühlt und gerührt wird, gegeben. Anschließend wird weiter 20 min unter Kühlung gerührt und danach auf Eis gegossen und mit Ether extrahiert. Die Etherlösung wird mit Wasser und gesättigter Natriumhydrogencarbonatlösung gewaschen, über Natriumsulfat getrocknet und anschließend i. Vak. eingedampft. Die isolierten, rasch zersetzlichen Rohprodukte werden an Kieselgel chromatographiert. Als Laufmittel dient destilliertes Methylenchlorid, dem in Abhängigkeit von der Polarität des Hydroxydiazens bis zu 5% Methanol zugesetzt werden. Die isolierten hellgelben kristallinen Substanzen sind bei Raumtemp. einige Stunden unzersetzt haltbar. Die in Tab. 5 angegebenen

	-4-(methyldiazenyl)-	Ausb.	Schmp.	Summenformel		A	nalys	e
	phenol	(%)	(°C)	(Molmasse)		С	H	Ν
7a	2,6-Dimethyl-	34	98	C ₉ H ₁₂ N ₂ O (164.2)	Ber. Gef.	65.83 65.91	7.37 7.34	17.06 16.84
7 b	2,3,6-Trimethyl-	51	107	$C_{10}H_{14}N_2O \\ (178.2)$	Ber. Gef.	67.39 67.26	7.92 7.88	15.72 15.60
7c	2,6-Di- <i>tert</i> -butyl-	48	123	C ₁₅ H ₂₄ N ₂ O (248.4)	Ber. Gef.	72.53 72.50	9.74 9.89	11.28 11.08
7 d	2-tert-Butyl-6-methyl-	43	113	C ₁₂ H ₁₈ N ₂ O (206.3)	Ber. Gef.	69.87 69.98	8.79 8.78	13.58 13.45
7e	2,6-Diisopropyl- ^{a)}			C ₁₃ H ₂₀ N ₂ O (220.3)				
7 f	2-Brom-6-tert-butyl-	42	99	$C_{11}H_{15}BrN_2O$ (271.2)	Ber. Gef.	48.72 48.83	5.58 5.61	10.33 10.28
7g	2-Brom-6- <i>tert</i> -butyl- 3-methyl-	49	103	C ₁₂ H ₁₇ BrN ₂ O (285.2)	 Ber. Gef. 	50.54 50.64	6.01 6.24	9.82 9.80
7 h	2,3,6-Trichlor-	53	106	C ₇ H ₅ Cl ₃ N ₂ O (239.5)	Ber. Gef.	35.11 35.30	2.10 2.19	11.70 11.57
12	2-Methyl-4-(methyl- diazenyl)-1-naphthol	60	152	C ₁₂ H ₁₂ N ₂ O (200.2)	Ber. Gef.	71.98 72.20	6.04 6.45	13.99 13.61

Tab. 5. Ausbeuten, Schmelzpunkte und Elementaranalysen der Hydroxydiazene 7a - h und 12

^{a)} Spektroskopisch identifiziert.

ŝ
"
ő
ŝ
Ε
2
E -
Ē
Ā
ΞŤ.
7 а
ેગ
cu
laz
Ϋ́ς
X
Ĭ
X
Ŧ
lei
Ē
ite
ñ
÷
Σ
Z
÷
Ξ.
œ.
ab
Ē

	Solvens	R ²	R³	R ⁵	Н	НО	CH ₃ (N)
7а	[D]Chloroform [D, lAceton	7.34 s 1H 7.33 s 1H	2.27 s 3H 2.29 s 3H	2.27 s 3H 2.29 s 3H	7.34 s 1 H 7.33 s 1 H	5.24 s 1 H 7.73 s 1 H	3.96 s 3 H 3.87 s 3 H
7 b	[D]Chloroform [DelAceton	2.47 s 3H 2.45 s 3H	2.12 s 3H 2.16 s 3H	2.14 s 3H 2.16 s 3H	6.99 s 1 H 7 01 s 1 H	4.85 s 1 H 7.45 s 1 H	3.90 s 3 H
7c	[D]Chloroform [D6]Aceton	7.56 s 1 H 7.56 s 1 H 8.00 s 1 H	1.44 s 9H 1.42 s 9H 1.32 s 9H	1.42 s 9H 1.42 s 9H 1.32 s 9H	7.56 s 1 H	5.44 s 1 H 6.29 s 1 H 6.19 s 1 H	3.91 s 3H 3.83 s 3H 3.85 s 3H
7 d	[D]Chloroform	7.59 d 1H	11.46 s 9 H	2.28 s 3H	0.00 s LH 7.36 d 1 H 1 - 2 7 H ₇	5.18 s 1 H	HE \$ 2005
	[D ₆]Aceton	J = 2.7 Hz	1.44 s 9H	2.34 s 3H	7.36 d 1H $T = 2.7 H_7$	7.72 s 1 H	3.88 s 3H
	[D ₆]Benzol	$S_{00} = 1 H$ J = 2.7 Hz	1.48 s 9 H	1.57 s 3H	7.58 d 1 H J = 2.7 Hz	4.34 s 1 H	3.82 s 3H
7e	[D]Chloroform	7.44 s 1 H	1.25 d 6H 3.14 sept 1H, 1 - 69 H ₇	1.25 d 6H 3.14 sept 1H, 7 – 6 9 H ₇	7.44 s 1 H	5.17 s 1 H	3.93 s 3H
	[D]Aceton	7.42 s 1 H	J = 6.8 Hz	J = 0.0122 d 6 H 3.37 sept 1 H, J = 6.8 Hz	7.42 s 1H	7.65 s 1 H	3.84 s 3 H
7f	[D]Chloroform [D,]Aceton	7.66 s 1 H 7.55 s 1 H		1.39 s 9 H 1.37 s 9 H	7.66 s 1 H 7.65 s 1 H	6.00 s 1 H 6.36 s 1 H	3.92 s 3H 3.87 s 3H
7g	[D]Chloroform [D, lAceton	2.61 s 3H 2.60 s 3H		1.34 s 9H 1.33 s 9H	7.35 s 1 H 7.40 s 1 H	6.15 s 1 H 6.73 s 1 H	3.93 s 3H 3.90 s 3H
7 ћ	[D]Chloroform [D6,1Aceton				7.43 s 1H 7.33 s 1H	6.16 s 1 H 7.93 s 1 H	4.05 s 3H 4.01 s 3H
12	[D]Chloroform ^{a)} [D ₆]Aceton ^{a)} [D ₆]Benzol ^{a)}		2.44 s 3 H 2.42 s 3 H 1.80 s 3 H			5.84 s 1 H 8.47 s 1 H 4.69 s 1 H	4.11 s 3H 3.98 s 3H 3.90 s 3H

^{a)} Multipletts von $\delta = 7.3 - 8.7$ nicht zugeordnet.

Ausbeuten beziehen sich auf durch Chromatographie gereinigte Produkte. Die dort ebenfalls angegebenen Schmelzpunkte und analytischen Daten gelten für frisch chromatographierte Substanzen. Das gilt auch für die in Tab. 6 und Tab. 7 zusammengestellten ¹H-NMR-Daten.

	Solvens	R ²	R ³	R ⁵	Н	NH	CH ₃ (N)
8c	[D ₆]Aceton	6.95 d 1 H J = 2.7 Hz	1.24 s 9H	1.26 s 9 H	7.35 d 1 H J = 2.7 Hz	a)	3.23 d 3 H J = 4.0 Hz
13	[D]Chloro- form ^{b)}	$7.34 \neq 1 H$ J = 1.4 Hz	2.18 d 3 H J = 1.4 Hz			$6.99 ext{ q } 1 ext{ H}$ $J = 4.0 ext{ Hz}$	3.41 d 3 H J = 4.0 Hz
	$[D_6]$ Aceton ^{b)}		2.05 d 3 H J = 1.4 Hz			a)	3.33 d 3 H J = 4.0 Hz
	[D ₆]Benzol ^{b)}	6.41 q 1 H J = 1.4 Hz	2.12 d 3 H J = 1.4 Hz			5.40 1 H breit	2.73 d 3 H J = 4.0 Hz

Tab. 7. ¹H-NMR-Daten der Chinon-alkylhydrazone 8c und 13

^{a)} Wegen geringer Intensität im ¹H-NMR-Spektrum nicht zu erkennen.

^{b)} Multipletts von $\delta = 7.3 - 8.7$ nicht zugeordnet.

Literatur

- ¹⁾ G. S. Hartley, J. Chem. Soc. 1938, 633.
- ²⁾ Übersicht: D. L. Ross und J. Blanc in Techniques of Chemistry (A. Weissberger), 1. Aufl., Bd. III, S. 500, Wiley-Interscience, New York 1971.
- ³⁾ N. A. Porter und L. J. Marnett, J. Am. Chem. Soc. 95, 4361 (1973).
- ^{4) 4a)} W. Ried und R. Dietrich, Chem. Ber. 94, 387 (1961). ^{4b)} E. Hofer, Dissertation, Techn. Univ. Hannover 1971. ^{4c)} L. I. Smith und W. B. Irwin, J. Am. Chem. Soc. 63, 1036 (1941).
- ⁵⁾ W. Ried und E. Kahr, Chem. Ber. 103, 331 (1970).
- ⁶⁾ W. Ried und E. A. Baumbach, Liebigs Ann. Chem. 726, 81 (1969).
- ⁷⁾ A. Mannschreck und B. Kolb, Chem. Ber. 105, 696 (1972).
- ⁸⁾ TMS = 0, innerer Standard.
- ⁹⁾ B. L. Kaul, P. Madhavan Nair, A. V. Rama Rao und K. Venktaraman, Tetrahedron Lett. 1966, 3897.
- ¹⁰⁾ G. O. Dudek und G. P. Volpp, J. Am. Chem. Soc. 85, 2697 (1963).
- ¹¹⁾ S. N. Ege und R. R. Sharp, J. Chem. Soc. B 1971, 2014.
- ¹²⁾ Übersicht: K. J. Morgan, J. Chem. Soc. 1961, 2151.
- ¹³⁾ P. Juvik und B. Sundby, Acta Chem. Scand. 27, 3632 (1973).
- ¹⁴⁾ A. J. Bellamy und R. D. Guthrie, J. Chem. Soc. 1965, 2788.
- ¹⁵⁾ H. Uffmann, Z. Naturforsch., Teil B 22, 491 (1967).
- ¹⁶⁾ V. Gutman, Chem. Br. 7, 102 (1971).
- ¹⁷⁾ M. J. Kamlet und R. W. Taft, J. Am. Chem. Soc. 98, 377 (1976).

[458/78]